
Shapeshifting Coloring Problems
Model AI Assignments, EAAI 2025

Ashwin Bharadwaj* Anio Zhang† Rajagopal Venkatesaramani‡

Khoury College of Computer Sciences
Northeastern University

In this assignment, you are given a PyGame environment (in the gridgame.py file) that
renders a randomly initialized n× n grid, with some cells pre-filled with one of four colors.
Your goal is to build an AI agent that solves a coloring problem over this grid (see pages
2 and 3 for constraints), such that no two cells that share an edge have the same color.

Figure 1: Examples of Initial Configurations

Your agent will attempt to fill the environment by moving a virtual ‘brush’ over this grid
and placing colored shapes, where the shape of the brush can be cycled through the
following choices (numbered 0-8):

*bharadwaj.ash@northeastern.edu
†zhang.shengn@northeastern.edu
‡r.venkatesaramani@northeastern.edu

1



Additionally, each brush can be cycled through one of four colors1 (numbered 0-3).

Your agent must interact with the environment using the execute() function called from
within the hw1.py file, with the following argument options (passed as strings):

• export: returns the current state of the grid, a list of shapes with positions and
colors currently placed on the grid, and a Boolean indicating whether the coloring
constraints have been satisfied.

• up/down/left/right: move the brush in the specified direction by one cell. The
brush starts in the top left corner of the grid when the program is executed.

• place: place a shape on the grid, i.e. color the cells covered by the brush in the
currently selected brush color.

• switchshape: cycle to the next brush shape option.

• switchcolor: cycle to the next brush color option.

• undo: undo the last placed shape.

Running the execute() function with any argument returns six items:

Variable Data Description

shapePos Brush Position
Current location of the

brush, (X, Y coordinates)
list of size 2

currentShapeIndex Current Shape Index Index of the currently
selected shape, int

currentColorIndex Current Color Index Index of the currently
selected color, int

grid Grid State
Updated state of
the (n× n grid),
np.array (shape n× n)

placedShapes Placed Shapes List of shapes already placed
on the grid, list(int)

done Coloring Constraints Satisfied? Boolean indicating if coloring
constraints are met, bool

Table 1: Summary of Data in the Shapeshifting Coloring Environment

1If, despite our best efforts, the color choices here pose accessibility concerns, they may be edited in the
gridgame.py file.

2



Your Task

Your goal is to build an AI agent that colors this grid using as few colors as possible, such
that no two adjacent cells share the same color. Further, your goal is to achieve this color-
ing using as few shapes and colors as possible - a larger brush may cover multiple cells,
but counts as one shape. You may use any of the concepts we have discussed in class
so far to implement your agent, but we highly recommend using a local search approach
such as hill climbing, simulated annealing or genetic algorithms to get the most out of this
assignment. Refer to hw1.py for implementation-specific instructions.

Recall that a local search may not always converge to the ‘optimal’ coloring; so this
assignment is graded on correctness, rather than optimality. Any implementation which
follows all the rules specified below and on average, leads to a valid coloring of the grid
within the autograder’s time limits will receive full points.

Environment Rules: Adjacent cells are defined as cells that share an edge between
them (i.e., diagonally neighboring cells may share the same color, since they only share a
vertex). If a brush partially or fully overlaps with an area of the grid that is already colored,
the execute function with the place argument will fail, i.e. the colors in those cells will not
be overwritten.

The environment is built as a Python class. You are only allowed to interact with the
environment with the .execute() method. Do not use any other method from the class to
modify any variables in the class. Moreover, you can use some of the utility functions to
help you write your solution. Feel free to change the arguments for the constructor to
make the exercise harder or easier.

Assignment Rules: Any hardcoded solutions, or attempts to leverage the autograder’s
design to maximize points scored will result in an automatic zero on the assignment. Your
agent must only use the execute() function to interact with the environment using its
different arguments, and use its returned values to implement your objective function, or
any validity check you may wish to use. Do not directly manipulate the gridgame variables
- doing so will result in an automatic zero. Treating the environment as a black box (even
when you know its internals) is a very important concept, and will serve you well in future
assignments, as well as in your AI careers. Implementations must be optimized for good
runtime - Gradescope has an autograder timeout of 10 minutes. Any submissions that do
not finish executing in 10 minutes will be treated as incomplete, and will be evaluated for
partial credit based on correctness.

Submission: Upload your completed hw1.py file, and the provided gridgame.py file to
Gradescope, and ensure the autograder testcases run as intended with no errors. Please
make sure you do not rename the files, or zip a directory containing the files; upload the
two files directly to Gradescope instead.

3



Beyond the Assignment - Broader Applications

Graph coloring is a versatile problem in graph theory with numerous practical applications
across various fields. Here are some example problems from the real world that are math-
ematically equivalent to graph coloring.

1. Scheduling

• In exam scheduling, vertices may represent exams and edges connect exams with
common students. Colors represent time slots. A proper coloring ensures no stu-
dent has conflicting exams. Ideas similar to the different brush types in this assign-
ment may be used to optimize room usage, time between exams, etc.

• Graph coloring can be used to schedule classes, ensuring no conflicts in room as-
signments or student schedules. Faculty room assignments for teaching courses
often follow a similar process.

• Graph coloring can optimize aircraft maintenance schedules, minimizing downtime
and maximizing efficiency.

2. Resource Allocation

• In radio and mobile networks, graph coloring can be used to assign specific frequen-
cies to a set of transmitters, while the objective function tries to minimize interfer-
ence. Vertices represent transmitters, edges may represent potential interference
as a result of a given frequency allocation, and colors represent frequencies.

• Compilers use graph coloring to allocate registers efficiently. Variables form vertices,
edges connect variables that are simultaneously active. Colors represent registers.

• Sudoku puzzles are a resource allocation problem that can be modeled as graph
coloring problems. Each cell is a vertex, with edges connecting cells that cannot
have the same number. Colors represent the numbers 1-9.

3. Network Analysis

• In various network scenarios, graph coloring can be used to identify and resolve
conflicts, such as in wireless sensor networks or traffic management systems.

• Graph coloring may be used in cybersecurity and network security applications.

4

https://www-cgrl.cs.mcgill.ca/~godfried/teaching/dm-reading-assignments/Map-Graph-Coloring.pdf
https://pp.bme.hu/ee/article/viewFile/926/544
https://www.zib.de/userpage//groetschel/teaching/SS2012/GraphCol%20and%20FrequAssignment.pdf
https://www.zib.de/userpage//groetschel/teaching/SS2012/GraphCol%20and%20FrequAssignment.pdf
https://en.wikipedia.org/wiki/Register_allocation#Graph-coloring_allocation
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2018-Conflict_SIDMA.pdf
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2018-Conflict_SIDMA.pdf
https://dl.acm.org/doi/abs/10.1145/1030083.1030101

	Assignment Instructions
	Programming_Assignment_1



